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1 Network design
1.1 Graphical Steiner tree
Problem description

• Input: an undirected graph 𝐺 = (𝑉 , 𝐸) with edge weights 𝑤 ∶ 𝐸 → ℝ+, a set of terminals 𝑆 ⊂ 𝑉

• Task: find a tree 𝑇 of minimum weight covering 𝑆

We already know two polynomial special cases:

• |𝑆| = 2: shortest path problem
• 𝑆 = 𝑉: minimum spanning tree (MST)

Unfortunately, the general version is NP-hard

1.2 Exact algorithms
• Dynamic programming (Dreyfus-Wagner): complexity 𝑂(3|𝑇 |𝑛 + 2|𝑇 |𝑛2 + 𝑚𝑛 + 𝑛2 log 𝑛)
• ILP: formulation is similar to TSP, with exponential number of constraints ⟹ branch & cut approach.

Let 𝑟 ∈ 𝑆 be any fixed terminal (root):

min
𝑥∈{0,1}𝐸

∑
𝑒∈𝐸

𝑤(𝑒)𝑥𝑒 s.t. ∑
𝑒∈𝛿(𝑋)

𝑥𝑒 ≥ 1 ∀𝑋 ⊆ 𝑉 , 𝑟 ∉ 𝑋, 𝑋 ∩ 𝑆 ≠ ∅

1.3 Approximation algorithms & heuristics
• 2-approximation algorithm (Kou-Markowsky-Berman):

– Let ̄𝐺 be the metric closure of 𝐺, and �̄� the (shortest path) edge weights
– Find an MST ̄𝑇 in ̄𝐺[𝑆] with respect to �̄�
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– Decompress it to obtain a Steiner tree 𝑇 in 𝐺
• Local search: same idea as for facility location.

– High-level search on the vertices 𝑉 (𝑇 ) of the Steiner tree (terminals ∪ Steiner points)
– If the vertices 𝑉 (𝑇 ) are fixed, choosing the edges 𝐸(𝑇 ) amounts to finding an MST

1.4 Variants
• Euclidean Steiner tree: NP-hard
• Manhattan Steiner tree: NP-hard

2 Lagrangian relaxation
Sometimes the bound provided by linear relaxation of a MILP is not tight enough.

In a few cases, one can change the formulation and handle an exponential number of constraints with
constraint generation (see TSP). We now present another method which is useful to decompose structured
problems.

2.1 Motivating example: MAPF
The Multi-Agent Path Finding problem consists in finding paths for a set 𝐴 of agents on a graph $G such
that:

1. The path 𝑃𝑎 of agent 𝑎 leads it from its origin 𝑜𝑎 to its destination 𝑑𝑎
2. The paths of two agents 𝑎1 and 𝑎2 cannot visit the same vertex at the same time

Without the conflict constraint, this decomposes into a set of |𝐴| independent shortest path problems, which
can be quickly solved with any standard algorithm from the class.

Unfortunately, the additional constraint makes MAPF NP-hard, which is why we need an additional trick to
exploit the problem’s natural decomposition.

2.2 Definition
We consider the general ILP

𝑧𝐼 = min
𝑥

𝑐⊤𝑥 s.t.
⎧{
⎨{⎩

𝐴easy𝑥 ≤ 𝑏easy
𝐴hard𝑥 ≤ 𝑏hard
𝑥 ∈ ℤ𝑛

Our premise is that this problem would be easy to solve if we had only the easy constraints. We are going
to use this insight by solving a new problem where the the hard constraints are penalized instead of being
strictly enforced:

𝑧𝐿𝑅(𝜆) = min
𝑥

𝑐⊤𝑥 + 𝜆⊤(𝐴hard𝑥 − 𝑏hard) s.t. {𝐴easy𝑥 ≤ 𝑏easy
𝑥 ∈ ℤ𝑛

We can compute 𝑧𝐿𝑅(𝜆) for any value of 𝜆, but we are interested in the best possible bound, so it makes
sense to search for

𝑧𝐿𝐷 = max
𝜆≥0

𝑧𝐿𝑅(𝜆)

Since 𝜆 ↦ 𝑧𝐿𝑅(𝜆) is a minimum of linear functions of 𝜆, it is concave and we can maximize it using simple
methods such as projected supergradient ascent (the analogue of subgradient descent).
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2.3 Quality of the bound
How does this Lagrangian dual bound 𝑧𝐿𝐷 compare to the linear relaxation 𝑧𝑙𝑖𝑛? To answer that, let us
define

𝑋easy = {𝑥 ∈ ℝ𝑛 | 𝐴easy𝑥 = 𝑏easy} and 𝑋hard = {𝑥 ∈ ℝ𝑛 | 𝐴hard𝑥 = 𝑏hard}

Then Geoffrion’s theorem tells us

𝑧𝐿𝐷 = min
𝑥

𝑐⊤𝑥 s.t. {𝑥 ∈ conv(𝑋easy ∩ ℤ𝑛)
𝑥 ∈ 𝑋hard

whereas the linear relaxation yields a weaker lower bound

𝑧𝑙𝑖𝑛 = min
𝑥

𝑐⊤𝑥 s.t. {𝑥 ∈ 𝑋easy
𝑥 ∈ 𝑋hard
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