
Shortest paths

Guillaume Dalle (ENPC, CERMICS)

REOP - Class 2 (29/09/2021)

Contents
1 Homework solutions 1

1.1 Exercise 3.3 . 1
1.2 Exercise 3.5 . 1
1.3 Exercise 3.10 . 2

2 Shortest path problem 2
2.1 Statement . 2
2.2 Integer Programming formulation . 2
2.3 Complexity . 3
2.4 Dynamic programming . 3
2.5 Shortest path variants . 4
2.6 Modeling examples . 4

3 Solution algorithms 4
3.1 Directed graphs with no absorbing cycles . 4

3.1.1 Bellman principle . 4
3.1.2 Bellman-Ford algorithm . 4

3.2 Directed Acyclic Graphs (DAGs) . 4
3.2.1 Bellman principle . 4
3.2.2 Topological ordering . 5

3.3 Directed graphs with nonnegative costs . 5
3.3.1 Dijkstra’s algorithm . 5
3.3.2 A* algorithm . 6

3.4 Dynamic Programming for MDPs . 6
3.5 Exercises . 6

Any feedback about the previous class?

1 Homework solutions
1.1 Exercise 3.3
In the adjacency matrix, 𝐴𝑢𝑣 = 1 iff there is an edge between 𝑢 and 𝑣. Therefore,

𝐴2
𝑢𝑣 = ∑

𝑤∈𝑉
𝐴𝑢𝑤𝐴𝑤𝑣 = ∑

𝑤∈𝑉
1{ the path 𝑢 → 𝑤 → 𝑣 exists} = nb of paths 𝑢 → 𝑤 → 𝑣

We can prove recursively that 𝐴𝑘
𝑢𝑣 is the number of paths of length 𝑘 from 𝑢 to 𝑣.

1.2 Exercise 3.5
Suppose 𝐺 is connected and undirected.

1

If 𝐺 is a Eulerian graph, then it has a Eulerian cycle (containing every edge exactly once). Each vertex 𝑣
appears in this cycle a certain number 𝑘𝑣 ≥ 1 of times (not 0). This means that deg(𝑣) = 2𝑘𝑣.

If every vertex has even degree, we can construct the Eulerian cycle. Start from any vertex 𝑣1 and iteratively
pick uncrossed edges until you are stuck. You will necessarily be stuck in 𝑣0 again because the even degree
of the vertices implies that for every way in there is a way out. If there is a vertex 𝑢 on the cycle that has
uncrossed incident edges, start a new cycle from 𝑣2 = 𝑢 and join it with the previous one. This allows us to
cross all edges of the connected component.

1.3 Exercise 3.10
𝑆 be a stable iff

• no edge has both its endpoints in 𝑆
• every edge has at least one endpoint in 𝑉 \𝑆
• 𝑉 \𝑆 is a vertex cover

𝑆 is the largest stable set in 𝐺 iff 𝑉 \𝑆 is the smallest vertex cover. Hence 𝛼(𝐺) = |𝑆| = |𝑉 | − |𝑉 \𝑆| =
|𝑉 | − 𝜏(𝐺).

2 Shortest path problem
2.1 Statement
Input:

• a directed graph 𝐷 = (𝑉 , 𝐴)
• a cost function 𝑐 ∶ 𝐴 → ℚ
• two vertices 𝑜 and 𝑑

Output: an 𝑜 → 𝑑 path 𝑃 of minimum cost 𝑐(𝑃) = ∑𝑎∈𝑃 𝑐(𝑎) (or a proof that none exists because 𝑜 and 𝑑
are not connected)

We denote by 𝑐(𝑣) the cost of a shortest 𝑜 → 𝑣 path.

In cases where the problem is not well-defined (example: all weights are negative), we will ask for the shortest
simple or elementary path instead.

2.2 Integer Programming formulation
Reminders

A Linear Program is an optimization problem with a linear objective and linear constraints:

min
𝑥∈ℝ𝑛

𝑐⊤𝑥 s.t. 𝐴𝑥 ≤ 𝑏 (LP)

A Mixed Integer Linear Program is a LP where some of the variables are constrained to be integers

min
𝑥∈ℤ𝑝×ℝ𝑛−𝑝

𝑐⊤𝑥 s.t. 𝐴𝑥 ≤ 𝑏 (MILP)

In theory, solving a MILP is hard. However:

• they are very useful to model lots of real-life problems
• there are practically efficient solvers that can handle millions of variables if the problem has a certain

structure

2

Formulation

Let 𝑥𝑢𝑣 be a binary variable equal to 1 if edge (𝑢, 𝑣) is part of the path we choose, and 0 otherwise.

The shortest elementary path problem can be stated as:

min
𝑥

∑
(𝑢,𝑣)∈𝐴

𝑐(𝑢, 𝑣)𝑥𝑢𝑣 s.t. 𝑥 ∈ {0, 1}𝐴 defines an 𝑜 → 𝑑 path

The constraint “𝑥 defines an 𝑜 → 𝑑 path” can be expressed linearly: if an vertex 𝑣 different from 𝑜 and 𝑑 is
visited, then it needs one incoming edge and one outgoing edge:

∀𝑣 ∈ 𝑉 , ∑
𝑢∈𝒩−(𝑣)

𝑥𝑢𝑣 − ∑
𝑤∈𝒩+(𝑣)

𝑥𝑣𝑤 =
⎧{
⎨{⎩

0 if 𝑣 ≠ 𝑜, 𝑑
−1 if 𝑣 = 𝑜
1 if 𝑣 = 𝑑

2.3 Complexity
Theorem: The shortest path problem is NP-complete in the general case.

Proof:

• Reduction from Hamiltonian path to longest simple path
• Reduction from longest simple path to shortest simple path

Polynomial cases:

• Unweighted graph: Breadth-First Search
• Acyclic graphs:

– Undirected: forest (at most 1 path between each pair)
– Directed: topological sorting

• Nonnegative costs
– Directed & undirected: Dijkstra’s algorithm

• No negative / absorbing cycles
– Directed: Bellman-Ford
– Undirected: T-joints

Algorithm Naive complexity Best complexity
Topological sorting 𝑂(𝑚 + 𝑛) 𝑂(𝑚 + 𝑛)
Dijkstra 𝑂(𝑛2) 𝑂(𝑚 + 𝑛 log𝑛)
Bellman-Ford 𝑂(𝑚𝑛) 𝑂(𝑚𝑛)

2.4 Dynamic programming
Underlying idea: Bellman’s optimality principle

A subtrajectory of an optimal trajectory is itself optimal.

Generalize the problem to derive a recursion called the Bellman equation. Usually done by changing the
bounds or adding parameters.

Knapsack example ⟹ IP formulation, DP algorithm.

First compute the value of a solution. Is is usually easy to go back to the minimizer by working your way
backwards.

3

2.5 Shortest path variants
Various flavors:

• Single source 𝑜, multiple destinations: the one studied here
• Single source 𝑜, single destination 𝑑: almost as hard
• Multiple sources, multiple destinations: harder

Extensions:

• Shortest paths with resource constraints (A. Parmentier’s thesis)
• Multi-criteria shortest paths
• Shortest paths on transportation networks: timed trips, multiple modes (Bast et al. 2016)

2.6 Modeling examples
Exercise 5.12: disjoint intervals and profitable rentals

3 Solution algorithms
3.1 Directed graphs with no absorbing cycles
3.1.1 Bellman principle

Proposition 5.2:

Let 𝑃 be an 𝑜 → 𝑣 path with 𝑘 arcs and 𝑄 be an 𝑜 → 𝑢 path, where 𝑢 is the vertex before 𝑣 on 𝑃. If 𝑃 is a
shortest 𝑜 → 𝑣 path among those with 𝑘 arcs, then 𝑄 is a shortest 𝑜 → 𝑢 path among those with 𝑘 − 1 arcs.

Proof:

• Suppose there is another 𝑜 → 𝑢 path 𝑄′ with 𝑘 − 1 arcs such that 𝑐(𝑄′) < 𝑐(𝑄).
• 𝑃 ′ = 𝑄′ ∪ (𝑢, 𝑣) is an 𝑜 → 𝑣 path with 𝑘 arcs.
• 𝑃 ′ has a cost 𝑐(𝑃 ′) = 𝑐(𝑄′) + 𝑐(𝑢, 𝑣) < 𝑐(𝑄) + 𝑐(𝑢, 𝑣) = 𝑐(𝑃).

3.1.2 Bellman-Ford algorithm

The length of a shortest 𝑜 → 𝑣 path satisfies the Bellman equation

𝑐(𝑣, 𝑘) = min
𝑢∈𝑁−(𝑣)

𝑐(𝑢, 𝑘 − 1) + 𝑐(𝑢, 𝑣)

with initial conditions

𝑐(𝑣, 0) = {0 if 𝑣 = 𝑜
−∞ otherwise

We can compute its values starting from 𝑘 = 0. But when do we stop? Since 𝐷 has no negative cycles, there
is a simple shortest path of length at most 𝑛 − 1. We compute 𝑐(𝑣, 𝑘) for all 𝑣 ∈ 𝑉 and 𝑘 ∈ [0, 𝑛], and then
pick 𝑘 minimizing 𝑐(𝑑, 𝑘).

By remembering, for each 𝑣, the in-neighbor 𝑢 that achieved the minimum, we can build a shortest-path tree.

3.2 Directed Acyclic Graphs (DAGs)
3.2.1 Bellman principle

Proposition 5.4:

Let 𝐷 be a DAG, 𝑃 be an 𝑜 → 𝑣 path ending with edge (𝑢, 𝑣), and 𝑄 be an 𝑜 → 𝑢 path. If 𝑃 is a shortest
𝑜 → 𝑣 path, then 𝑄 is a shortest 𝑜 → 𝑢 path.

4

Proof:

• Suppose there is another 𝑜 → 𝑢 path 𝑄′ such that 𝑐(𝑄′) < 𝑐(𝑄).
• 𝑃 ′ = 𝑄′ ∪ (𝑢, 𝑣) is an 𝑜 → 𝑣 path.
• 𝑃 ′ has a cost 𝑐(𝑃 ′) = 𝑐(𝑄′) + 𝑐(𝑢, 𝑣) < 𝑐(𝑄) + 𝑐(𝑢, 𝑣) = 𝑐(𝑃).

Recursive equation

The length of a shortest 𝑜 → 𝑣 path satisfies the Bellman equation

𝑐(𝑣) = min
𝑢∈𝑁−(𝑣)

𝑐(𝑢) + 𝑐(𝑢, 𝑣) and 𝑐(𝑜) = 0

Problem: in which order do we enumerate the vertices? The constraint is that we must compute 𝑐(𝑢) before
𝑐(𝑣) if there is an edge (𝑢, 𝑣) in 𝐴.

3.2.2 Topological ordering

A digraph 𝐷 = (𝑉 , 𝐴) is acyclic iff there exists a total order ⪯ (i.e. a numbering of the vertices) such that
(𝑢, 𝑣) ∈ 𝐴 ⟹ 𝑢 ⪯ 𝑣.

We define the operation DFS(𝑣) (Depth-First Search) as follows:

1. open 𝑣 (put in 𝑆)
2. scan its children
3. close 𝑣 (put in 𝐿)

This recursive definition is consistent since the graph has no cycles.

If we add a dummy vertex which has all the “orphan” nodes as children, we can consider the case with only
one orphan node 𝑜. Then, Algorithm 2 is equivalent to applying DFS(𝑜).

Reversing the order in which vertices are closed yields a topological sort, since children are always closed
before their parents.

3.3 Directed graphs with nonnegative costs
3.3.1 Dijkstra’s algorithm

Pseudocode:

Input: a digraph 𝐷 = (𝑉 , 𝐴) and costs 𝑐 ∈ ℚ𝐴
+ .

1. Set 𝑈 = ∅ (set of visited vertices)
2. Set 𝜆(𝑣) = 0 if 𝑣 = 𝑜 and 𝜆(𝑣) = +∞ otherwise (initialize labels)
3. While 𝑉 \𝑈 ≠ ∅:

1. Choose 𝑣 ∈ 𝑉 \𝑈 such that 𝜆(𝑣) = min𝑣′∈𝑉 \𝑈 𝜆(𝑣′) (choose the closest unvisited vertex according
to the label)

2. Add 𝑣 to 𝑈 (visit it)
3. Set 𝜆(𝑤) = min{𝜆(𝑤), 𝜆(𝑣) + 𝑐(𝑣, 𝑤)} for all 𝑤 ∈ 𝑁+(𝑤) (update neighbor labels)

Output: the vector 𝜆 which contains all distances 𝑜 → 𝑣

Proposition: (Values of the tentative distance)

• For all 𝑢 ∈ 𝑈, 𝜆(𝑢) = 𝑐(𝑢)
• For all 𝑤 ∈ 𝑉 \𝑈, 𝜆(𝑤) = min𝑢∈𝑈 𝑐(𝑢) + 𝑐(𝑢, 𝑤) ≥ 𝑐(𝑤)

Proof: Make a drawing!

Since they hold after initialization, we must only check that these properties are preserved by the loop.

5

Let 𝑣 be the closest vertex according to the tentative distance, i.e. the one achieving min𝑣′∈𝑉 \𝑈 𝜆(𝑣′). By
property 2, 𝜆(𝑣) = min𝑢∈𝑈 𝑐(𝑢) + 𝑐(𝑢, 𝑣′), so let 𝑢 be the minimizer there.

Consider any other path from 𝑜 to 𝑣. Let 𝑣′ be its first vertex outside of 𝑈, and 𝑢′ the one before that.

The path 𝑜 𝑢 𝑣 has cost 𝑐(𝑢) + 𝑐(𝑢, 𝑣) = 𝜆(𝑣). The path 𝑜 𝑢′ 𝑣′ has cost 𝑐(𝑢′) + 𝑐(𝑢′, 𝑣′) =
𝜆(𝑣′) ≥ 𝜆(𝑣). The remaining path 𝑣′ 𝑣 has strictly positive cost. Hence 𝑜 𝑣′ 𝑣 is not better.

Therefore, 𝜆(𝑣) = 𝑐(𝑣) and the first property is preserved. The second property is easier to verify.

3.3.2 A* algorithm

Idea: speed up Dijkstra using a heuristic ℎ(𝑣) to lower-bound the remaining distance 𝑣 → 𝑑.

Procedure: grow a set of paths and trim the ones that are hopeless.

Special case of Branch & Bound and LP duality.

Essential in transportation networks because the graphs are large but we have an idea of where to go.

3.4 Dynamic Programming for MDPs
See course notes

Talk about my internship at EDF on the optimization of cleaning schedules for photovoltaic solar panels

3.5 Exercises
Exercise 5.19: longest common subword

Exercise 5.20: Held-Karp algorithm for the TSP

References

Bast, Hannah, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor, Peter Sanders,
Dorothea Wagner, and Renato F. Werneck. 2016. “Route Planning in Transportation Networks.” In
Algorithm Engineering: Selected Results and Surveys, edited by Lasse Kliemann and Peter Sanders, 19–80.
Lecture Notes in Computer Science. Cham: Springer International Publishing. https://doi.org/10.1007/
978-3-319-49487-6_2.

6

https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1007/978-3-319-49487-6_2

	Homework solutions
	Exercise 3.3
	Exercise 3.5
	Exercise 3.10

	Shortest path problem
	Statement
	Integer Programming formulation
	Complexity
	Dynamic programming
	Shortest path variants
	Modeling examples

	Solution algorithms
	Directed graphs with no absorbing cycles
	Bellman principle
	Bellman-Ford algorithm

	Directed Acyclic Graphs (DAGs)
	Bellman principle
	Topological ordering

	Directed graphs with nonnegative costs
	Dijkstra's algorithm
	A* algorithm

	Dynamic Programming for MDPs
	Exercises

