
Spanning trees and complexity

Guillaume Dalle (ENPC, CERMICS)

REOP - Class 4 (20/10/2021)

Contents
1 Homework solutions 1

2 Minimum spanning trees 1
2.1 Definitions . 1
2.2 Greedy construction . 1

2.2.1 Kruskal’s algorithm . 2
2.2.2 Correctness argument . 2
2.2.3 Remarks . 3

2.3 Spanning tree polytope . 3

3 Introduction to complexity theory 3
3.1 Decision and optimisation problems . 3
3.2 Complexity classes . 4

3.2.1 Why is it important? . 4
3.2.2 The classes P and NP . 4
3.2.3 NP-completeness . 4
3.2.4 The 1M dollar hypothesis . 4
3.2.5 Optimisation problems . 5

Reminder: there will be a 1h exam on November 10th about everything you will have seen then.

1 Homework solutions
You will find solutions for this week’s homework (exercises 6.10 and 6.13) in the complete lecture notes on
Educnet.

2 Minimum spanning trees
2.1 Definitions
A spanning subgraph of 𝒢 = (𝑉 ,𝐸) is a subgraph ℋ = (𝑉 , 𝐹) whose set of edges is incident to every vertex
of 𝑉. If ℋ is a also a tree (connected & without cycles), we talk of a spanning tree.

Minimum spanning tree (MST) problem:

• Input: An undirected connected graph 𝒢 = (𝑉 ,𝐸), a weight function 𝑐 ∶ 𝐸 → ℝ
• Output: A spanning tree 𝒯 = (𝑉 , 𝑇) of minimum weight ∑𝑒∈𝑇 𝑐(𝑒)

2.2 Greedy construction

1

2.2.1 Kruskal’s algorithm

1. Sort 𝐸 by increasing edge weight: 𝐸 = {𝑒1, ..., 𝑒𝑚} with 𝑐(𝑒𝑖) ≤ 𝑐(𝑒𝑖+1)
2. Start with 𝐹0 = ∅
3. For 𝑖 = 1, ..., 𝑛: if 𝐹𝑖−1 ∪ {𝑒𝑖} has no cycles, set 𝐹𝑖 = 𝐹𝑖−1 ∪ {𝑒𝑖}, otherwise set 𝐹𝑖 = 𝐹𝑖−1.
4. Return 𝒯 = (𝑉 , 𝐹𝑚).

Exercise 4.2: applying Kruskal’s algorithm

2.2.2 Correctness argument

At any time during the algorithm, ℱ𝑖 = (𝑉 , 𝐹𝑖) is a forest because we ensure that it remains without cycles.
So 𝒯 is a forest.

If 𝒯 = (𝑉 , 𝐹𝑚) is not connected (in particular, if it has isolated vertices), then let 𝑉1 and 𝑉2 be two connected
components in 𝒯. Since 𝒢 is connected, there is an edge 𝑒 ∈ 𝐸 between 𝑉1 and 𝑉2: this edge does not belong
to 𝒯 and does not create a cycle, hence it should have been added at some point in the algorithm. We obtain
a contradiction: 𝒯 is a connected forest on 𝑉, aka a spanning tree.

To prove that 𝒯 has minimum weight among all spanning trees, we can use the following loop invariant: for
all 𝑖, there is a minimum spanning tree 𝒯𝑖 = (𝑉 , 𝑇𝑖) such that ℱ𝑖 = (𝑉 , 𝐹𝑖) is a subgraph of 𝒯𝑖. This will
allow us to conclude that 𝒯 = 𝒯𝑚 (since both are trees with the same number of vertices).

Exercise: Prove that the loop invariant stays true during iteration 𝑖. To do that, try to build 𝑇𝑖
from 𝑇𝑖−1 by considering all possible cases. You will need to justify the following statements, in
order:

1. We only need to consider the case where 𝑒𝑖 = (𝑢𝑖, 𝑣𝑖) is added to 𝐹𝑖−1 but doesn’t belong to
𝑇𝑖.

2. In this case, let 𝑋 be the connected component of ℱ𝑖−1 containing 𝑢𝑖: 𝑋 does not contain 𝑣𝑖
3. 𝑇𝑖−1 contains exactly one path between 𝑢𝑖 and 𝑣𝑖, which crosses the cut 𝛿(𝑋, 𝑉 \𝑋) using an

edge 𝑓 ≠ 𝑒𝑖.
4. The cut 𝛿(𝑋, 𝑉 \𝑋) is disjoint from 𝐹𝑖−1
5. 𝛿(𝑋, 𝑉 \𝑋) does not contain any 𝑒𝑗 with 𝑗 < 𝑖
6. 𝑇𝑖 ∶= 𝑇𝑖−1\{𝑓} ∪ {𝑒𝑖} satisfies 𝑐(𝑇𝑖) ≤ 𝑐(𝑇𝑖−1)
7. 𝑇𝑖 is still a spanning tree

Here are the justifications:

1. If we don’t add edge 𝑒𝑖 to 𝐹𝑖−1, nothing happens, and since 𝐹𝑖 = 𝐹𝑖−1 ⊂ 𝑇𝑖−1, we can take 𝑇𝑖 ∶= 𝑇𝑖−1 to
be a MST containing 𝐹𝑖. If we add 𝑒𝑖 to 𝐹𝑖−1 and 𝑒𝑖 is already in 𝑇𝑖−1, we can also take 𝑇𝑖 ∶= 𝑇𝑖−1. If
we add 𝑒𝑖 to 𝐹𝑖−1 but 𝑒𝑖 is not in 𝑇𝑖−1, then we must be more clever since the spanning tree containing
𝐹𝑖 changes.

2. 𝑣𝑖 ∉ 𝑋 because 𝑒𝑖 ∉ 𝐹𝑖−1 and adding 𝑒𝑖 does not create a cycle, so there is no way to get from 𝑢𝑖 to 𝑣𝑖
in 𝐹𝑖−1.

3. There is only one path from 𝑢𝑖 to 𝑣𝑖 because 𝑇𝑖−1 is a tree. The edge of this path crossing the cut is
different from 𝑒 because 𝑒𝑖 ∉ 𝑇𝑖−1.

4. If we had 𝛿(𝑋, 𝑉 \𝑋) ∩ 𝐹𝑖−1 ≠ ∅ then the connected component 𝑋 could be extended and would not be
maximal.

5. An edge 𝑒𝑗 with 𝑗 < 𝑖 is either in 𝐹𝑖−1 (which means it is not in the cut), or it creates a cycle in 𝐹𝑖−1,
but this would require some edge of 𝛿(𝑋, 𝑉 \𝑋) to be in 𝐹𝑖−1 (which is impossible).

6. We have 𝑓 = 𝑒𝑗 with 𝑒𝑗 > 𝑒𝑖, which means 𝑐(𝑓) ≥ 𝑐(𝑒𝑖). As a consequence, if we define 𝑇𝑖 ∶=
𝑇𝑖−1\{𝑓} ∪ {𝑒𝑖}, then we have 𝑐(𝑇𝑖) = 𝑐(𝑇𝑖−1) + 𝑐(𝑒𝑖) − 𝑐(𝑓) ≤ 𝑐(𝑇𝑖−1).

7. 𝑇𝑖 ∪ {𝑒𝑖} has exactly one cycle containing 𝑒𝑖 and 𝑓, which means removing 𝑓 preserves the spanning
property and the connectedness, while making the subgraph acyclic again.

2

2.2.3 Remarks

Kruskal’s algorithm is greedy, but surprisingly it returns an optimal solution! Prim’s algorithm is another
example of greedy algorithm for the MST: instead of uniting forests, it grows a single tree.

Implementing Kruskal’s algorithm is non-trivial: naively checking whether 𝑒𝑖 creates a cycle in 𝐹𝑖−1 would
be very inefficient. Standard implementations use a specific data structure called “Union-Find” to store the
disjoint forests and merge them.

2.3 Spanning tree polytope
The MST problem can be formulated as a Mixed Integer Linear Program:

min∑
𝑒∈𝐸

𝑐(𝑒)𝑥𝑒 s.t.
⎧{
⎨{⎩

∑𝑒∈𝐸 𝑥𝑒 = |𝑉 | − 1
∑𝑒∈𝐸[𝑋] 𝑥𝑒 ≤ |𝑋| − 1 ∀𝑋 ⊂ 𝑉 ,𝑋 ∉ {∅, 𝑉 }
𝑥𝑒 ∈ {0, 1} ∀𝑒 ∈ 𝐸

Given an optimal solution 𝑥∗ to this program, we can construct a subgraph (𝑉 ,𝐸𝑥∗) with 𝐸𝑥∗ = {𝑒 ∈ 𝐸 ∶
𝑥∗

𝑒 = 1}.

The second constraint imposes the absence of cycle among any subset of the vertices, which ensures we have
a forest. The first constraint tells us that the forest is maximal, i.e. a (spanning) tree. The objective function
ensures minimality of the weight.

However, this MILP is not easy to solve, for two reasons:

• The integrality constraint 𝑥𝑒 ∈ {0, 1}. This is addressed by Theorem 4.4: we can replace the constraint
by 𝑥𝑒 ≥ 0 and still be sure that basic optimal solutions (returned by the simplex) are binary-valued.

• The exponential number of constraints. This is taken care of by Exercise 4.4, which shows how to
decide efficiently whether any constraint is broken. Counterintuitively, this means we can solve the LP
efficiently, at least in theory.

Exercise 4.4: The separation problem for the spanning tree polytope is polynomial.

For Q2, we assume a feasible solution 𝑥 is given. - Given a set of vertices 𝑋, show that we can find
a cut 𝜑(𝑋) with capacity |𝑋| +∑𝑒∉𝐸(𝑋) 𝑥𝑒. - Given a minimum cut 𝐵 on the graph defined Q1,
show that we can find a cut 𝐵′ of the same capacity and a set of vertices 𝑋 such that 𝐵′ = 𝜑(𝑋).

In the standard setting, there is no need for this LP since Kruskal’s algorithm is faster. However, it is very
useful when additional constraints or objectives are involved.

3 Introduction to complexity theory
See the introduction class for the intuitive definitions of “problem” and “algorithm.”

There are undecidable problems, such as the halting problem (deciding whether an algorithm will terminate
or not on a given input). Here we focus on decidable problems and study their complexity.

3.1 Decision and optimisation problems
Formally, anything we can give to a computer can be described as a word 𝑥 from a language 𝑋. A decision
problem is a couple (𝑋, 𝑌) where

• 𝑋 is a language called the input (“decidable” in polynomial time)
• Its elements 𝑥 ∈ 𝑋 are called instances
• 𝑌 ⊂ 𝑋 contains all instances for which the answer is “yes”
• 𝑋\𝑌 contains all instances for which the answer is “no”

3

A solution algorithm is a function 𝑓 ∶ 𝑋 → {yes, no} such that 𝑓(𝑌) = {yes} and 𝑓(𝑋\𝑌) = {no}. The
algorithm 𝑓 runs in polynomial time if there is a polynomial 𝑃 such that its number of steps in its execution
on instance 𝑥 can be bounded by 𝑃(size(𝑥)). Here size(𝑥) is the length of the word 𝑥 in binary (example:
integer factorization).

3.2 Complexity classes
3.2.1 Why is it important?

The complexity class determines the method we can try:

• Fast exact algorithms for “easy” problems
• Fast approximate or heuristic algorithms for “hard” problems

Easy Hard
Eulerian cycle Hamiltonian cycle
Shortest path Longest path
2-SAT 3-SAT
Minimum spanning tree Steiner tree
Train shunting (night) Train shunting (day)

3.2.2 The classes P and NP

The class P contains all decision problems for which there is a polynomial algorithm that returns a solution.

The class NP (for “Nondeterministic Polynomial”) contains all decision problems for which there is a
polynomial algorithm that verifies a solution, using a so-called certificate. We don’t need to be able to
generate a certificate in polynomial time, just to check it against the instance.

Exercise : prove that P ⊂ NP.

Remarks:

• Why polynomial time (Cobham’s thesis)? Independent of the underlying computer model.
• Not independent of the encoding: binary vs unary.
• Why no mention of memory? On a Turing machine, memory is bounded by time.

Exercise: Devise a dynamic programming algorithm for the knapsack problem. Is it enough to
prove that this problem is in P?

3.2.3 NP-completeness

A reduction of a problem 𝑃 = (𝑋, 𝑌) to 𝑃 ′ = (𝑋′, 𝑌 ′) is a mapping 𝑟 ∶ 𝑋 → 𝑋′ such that 𝑥 ∈ 𝑌 ⟺ 𝑟(𝑥) ∈
𝑌 ′. The reduction is called polynomial if 𝑟 can be computed in polynomial time.

A decision problem 𝑃 is NP-complete if

1. 𝑃 is in NP
2. Any decision problem 𝑃 ′ in NP reduces polynomially to 𝑃

Since mathematicians have already compiled a large list of NP-complete problems, to prove the second point
we only need to reduce a known NP-complete problem to 𝑃.

A decision or optimisation problem is NP-hard if any decision problem 𝑃 ′ in NP reduces polynomially to 𝑃.

3.2.4 The 1M dollar hypothesis

One of the seven Millenium Prize Problems listed by the Clay Mathematics Institute. Still unsolved, although
no one expects P to be equal to NP.

4

If P ≠ NP, then both P problems and NP-complete problems are proper subsets of NP problems, which is
itself a proper subset of NP-hard problems. More surprisingly, this would also mean that there are some
problems which are neither polynomial nor NP-complete (graph isomorphism).

There are many more complexity classes with exotic properties: feel free to visit the complexity zoo if you
want to have a laugh.

3.2.5 Optimisation problems

If we can solve the optimisation problem

min
𝑥

𝑐(𝑥) s.t. 𝑥 ∈ 𝑋

we can solve its decision version

∃? 𝑥 s.t. 𝑥 ∈ 𝑋 and 𝑐(𝑥) ≤ 𝑐0

To prove that an optimisation problem 𝑂 is NP-hard, it is enough to reduce a known NP-complete decision
problem to its decision version dec(𝑂).

Exercise: Prove that the shortest path problem is NP-hard in the general case. To do that, use a
reduction from Hamiltonian path to longest simple path, followed by a second reduction from
longest simple path to shortest simple path.

Exercise: The 3-SAT problem can be described as follows:

• Input: A boolean formula 𝐹(𝑥) on 𝑛 binary variables 𝑥1, ..., 𝑥𝑛 in conjunctive normal form
(i.e. a conjunction ∧ = AND of ∨ = OR clauses) with at most three literals by clause (a literal
can be 𝑥𝑖 or ¬𝑥𝑖). Example: 𝐹(𝑥) = (𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3) ∧ (¬𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3).

• Output:
• yes if there is an 𝑥 ∈ {0, 1}𝑛 satisfying 𝐹, and no otherwise.

By the Cook-Levin theorem, 3-SAT is NP-complete. Show that this implies the maximum clique
problem is NP-hard. Starting with an instance of 3-SAT, you can build an instance of CLIQUE
using the graph shown on the Wooclap slide.

5

https://complexityzoo.net/Complexity_Zoo

	Homework solutions
	Minimum spanning trees
	Definitions
	Greedy construction
	Kruskal's algorithm
	Correctness argument
	Remarks

	Spanning tree polytope

	Introduction to complexity theory
	Decision and optimisation problems
	Complexity classes
	Why is it important?
	The classes \mathbf{P} and \mathbf{NP}
	\mathbf{NP}-completeness
	The 1M dollar hypothesis
	Optimisation problems

