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1 Homework
1.1 Separation problem for the spanning tree polytope
For Q2, we assume a feasible solution 𝑥 is given.

• Given a set of vertices 𝑋, we show that we can find a cut 𝜑(𝑋) with capacity |𝑋| + ∑𝑒∉𝐸(𝑋) 𝑥𝑒.
• Given a minimum cut 𝐵 on the graph defined Q1, we show that we can find a cut 𝐵′ of the same

capacity and a set of vertices 𝑋 such that 𝐵′ = 𝜑(𝑋).

1.2 Reduction from 3-SAT to CLIQUE
The 3-SAT problem can be described as follows:

• Input: A boolean formula 𝐹(𝑥) on 𝑛 binary variables 𝑥1, ..., 𝑥𝑛 in conjunctive normal form (i.e. a
conjunction ∧ = AND of ∨ = OR clauses) with at most three literals by clause (a literal can be 𝑥𝑖 or ¬𝑥𝑖).
Example: 𝐹(𝑥) = (𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3) ∧ (¬𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥3).

• Output: yes if there is an 𝑥 ∈ {0, 1}𝑛 satisfying 𝐹, and no otherwise.

By the Cook-Levin theorem, 3-SAT is NP-complete. We show that this implies the maximum clique problem
is NP-hard. Starting with an instance of 3-SAT, we can build an instance of CLIQUE using the graph shown
on the Wooclap slide.
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Since we didn’t have time to correct this exercise during the session, if you want to see the solution, open
this PDF book and go to page 1086.

1.3 Dynamic programming for the knapsack problem
The knapsack problem consists in filling a bag by choosing from a set of items 𝑖 ∈ {1, ..., 𝑛} with weights 𝑤𝑖
and prices 𝑝𝑖. Its decision version asks whether there is a subset with total weight ≤ 𝑊 but total price ≥ 𝑃.

We can build a dynamic programming algorithm to compute the value function

𝑃(𝑛, 𝑊) = maximum price for a bag of weight ≤ 𝑊 with the 𝑛 first items

However its complexity depends on 𝑊, which makes it pseudo-polynomial. So this algorithm isn’t sufficient
to prove that KNAPSACK is in P.

2 Modeling with linear functions
2.1 Polyhedra
A polyhedron 𝑃 is a finite intersection of closed half-spaces:

𝑃 = ⋂
𝑖∈[𝑚]

{𝑥 ∈ ℝ𝑛 ∶ 𝑎𝑖𝑥 ≤ 𝑏𝑖} = {𝑥 ∈ ℝ𝑛 ∶ 𝐴𝑥 ≤ 𝑏}

Here the inequality 𝐴𝑥 ≤ 𝑏 must be understood entrywise.

A polytope is a bounded polyhedron.

We say that 𝑥 ∈ 𝑃 is a vertex (or extreme point) of the polyhedron if 𝑥 cannot be written as a non-trivial
mean of two other points of 𝑃:

𝑥 = 𝑦 + 𝑧
2

with 𝑦, 𝑧 ∈ 𝑃 ⟹ 𝑦 = 𝑧 = 𝑥

2.2 Linear optimization problems
A Linear Program is an optimization problem with linear objective and affine constraints:

min
𝑥∈ℝ𝑛

𝑐⊤𝑥 s.t. 𝐴𝑥 ≤ 𝑏 ⟺ min
𝑥∈𝑃

𝑐⊤𝑥

In standard form, it is written
min

𝑥
𝑐⊤𝑥 s.t. 𝐴𝑥 = 𝑏, 𝑥 ≥ 0 (LP)

and we assume without loss of generality that rank(𝐴) = 𝑚 ≤ 𝑛 (no redundant constraints).

Exercise (Meunier - PL1): Prove that both forms above are equivalent.

A base 𝐵 ⊂ [𝑛] is a subset of 𝑚 linearly independent columns of 𝐴: the submatrix 𝐴𝐵 = (𝑎𝑖,𝑗)𝑖∈[𝑚],𝑗∈𝐵 is
nonsingular. Every base defines a basic solution of (LP)

𝑥 = (𝑥𝐵
𝑥𝑁

) with {𝑥𝐵 = 𝐴−1
𝐵 𝑏

𝑥𝑁 = 0

which is called basic feasible if 𝐴−1
𝐵 𝑏 ≥ 0.
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2.3 Where to find an optimum?
Theorem (Interpretation of bases): 𝑥 is a basic feasible solution of (LP) iff it is a vertex of the polyhedron 𝑃.

Proof :

• Suppose 𝑥 is a feasible basic solution. There is a basis 𝐵 such that 𝑥𝐵 = 𝐴−1
𝐵 𝑏 ≥ 0 and 𝑥𝑁 = 0. In

addition, since 𝐴𝑦 = 𝐴𝐵𝑦𝐵 = 𝑏 we see that 𝑦𝐵 = 𝐴−1
𝐵 𝑏 = 𝑥𝐵 and the same goes for 𝑧𝐵. Therefore,

𝑦 = 𝑧 = 𝑥.
• Now suppose that 𝑥 is a vertex of 𝑃. Let 𝐾 = {𝑗 ∈ [𝑛] ∶ 𝑥𝑗 > 0}. Let 𝑑𝐾 ∈ ker 𝐴𝐾 and 𝑑 ∈ ℝ𝑛 equal

to 𝑑𝐾 on 𝐾 and equal to 0 elsewhere. Then for 𝜖 > 0 small enough, 𝑥 ± 𝜖𝑑 ∈ 𝑃, which means that
𝑑 = 0. Thus 𝐴𝐾 has independent columns, and since rank𝐴 = 𝑚, 𝐾 can be completed into a set 𝐵 of
size 𝑚 such that 𝐴𝐵 is invertible. As a consequence, 𝐵 is a basis and 𝑥 = (𝑥𝐵, 𝑥𝑁) with 𝑥𝑁 = 0 and
𝑥𝐵 = 𝐴−1

𝐵 𝑏 ≥ 0.

Theorem (Existence of an optimum): If 𝑃 ≠ ∅ and inf𝑥∈𝑃 𝑐⊤𝑥 > −∞, then (LP) has an optimal solution.

Proof (for the bounded case):

If 𝑃 is a polytope, 𝑃 is compact and the result follows.

Theorem 9.1 (Optimal basis): If (LP) has an optimal solution, then at least one of the optimal solutions is
basic (feasible).

Proof (for the bounded case):

We admit the Minkowski-Weyl theorem (every polytope is the convex hull of its vertices). Let 𝑥 be an
optimal solution of (LP), then 𝑥 = ∑𝑘 𝜆𝑘𝑣𝑘 where the 𝑣𝑘 are the vertices of 𝑃 and the 𝜆𝑘 ≥ 0 sum to 1. By
concavity of 𝑥 ↦ 𝑐⊤𝑥, we know that 𝑐⊤𝑥 ≥ ∑𝑘 𝜆𝑘(𝑐⊤𝑣𝑘), hence there is a 𝑘 such that 𝑐⊤𝑥 ≥ 𝑐⊤𝑣𝑘. Then 𝑣𝑘
is an optimal solution, and it is basic feasible.

3 Solution algorithms for LPs
Naive algorithm: enumerate all bases, discard the infeasible ones and compare the feasible ones. Unfortunately,
this method has exponential runtime.

3.1 Simplex algorithm
3.1.1 General idea

Starting from a given vertex, try to find one of its neighbors with smaller cost. The way we choose the
neighbor is called a pivot rule.

To find the initial vertex, we run a first simplex on an auxiliary problem which is easier to initialize.

3.1.2 Reduced costs

Going from one vertex to the next is like going from one basis to the next. We can rewrite the constraints of
(LP) by decomposing 𝑥 along the current basis 𝐵:

𝐴𝑥 = 𝑏 ⟺ 𝐴𝐵𝑥𝐵 + 𝐴𝑁𝑥𝑁 = 𝑏 ⟺ 𝑥𝐵 = 𝐴−1
𝐵 (𝑏 − 𝐴𝑁𝑥𝑁)

Starting from 𝐵, we rewrite the objective as:
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𝑐⊤𝑥 = 𝑐⊤
𝐵𝑥𝐵 + 𝑐⊤

𝑁𝑥𝑁

= 𝑐⊤
𝐵 (𝐴−1

𝐵 (𝑏 − 𝐴𝑁𝑥𝑁)) + 𝑐⊤
𝑁𝑥𝑁

= 𝑐𝐵𝐴−1
𝐵 𝑏⏟

cost of the
basic solution

+ (𝑐𝑁 − 𝐴⊤
𝑁(𝐴−1

𝐵 )⊤𝑐𝐵)⊤
⏟⏟⏟⏟⏟⏟⏟⏟⏟

reduced cost 𝑟⊤
𝑁

𝑥𝑁

= cost(sol(𝐵)) + 𝑟⊤
𝑁𝑥𝑁

Proposition 9.2 (Role of the reduced cost): If 𝑟𝑁 ≥ 0, then 𝐵 is an optimal basis. Otherwise, we can
decrease the objective value by increasing 𝑥𝑗 where 𝑗 ∈ 𝑁 is such that 𝑟𝑗 < 0. This either leads to a new
basis 𝐵′ ⊂ 𝐵 ∪ {𝑗} or to a direction of unboundedness.

Exercise (Meunier - PL11): Basic principle of column generation

Let (𝑃 ) be the linear program

min 𝑐⊤𝑥 s.t. 𝐴𝑥 = 𝑏, 𝑥 ∈ ℝ𝑛
+

We suppose that 𝑛 is very large. Let 𝐼 ⊂ [𝑛], we consider the program (𝑃 𝐼):

min 𝑐⊤
𝐼 𝑥′ s.t. 𝐴𝑥′ = 𝑏, 𝑥′ ∈ ℝ𝐼

+

We denote by (𝐷) and (𝐷𝐼) the respective dual problems of (𝑃 ) and (𝑃𝐼). Let ̃𝑦 be an optimal
solution of (𝐷𝐼). Show that if ̃𝑦 is also a feasible solution to (𝐷), then the optimal value of (𝑃 𝐼)
is the same as the optimal value of (𝑃 ).

Exercise 9.5: Dual simplex

3.2 Ellipsoid and interior point methods
The simplex is efficient in practice, but has exponential worst-case running time for all known pivot rules.
Other methods, discovered much later, have a much better theoretical complexity (polynomial even in the
worst case): ellipsoid algorithm, interior point algorithms.

In particular, the ellipsoid algorithm runs in polynomial time even with an exponential number of constraints,
as long as the separation problem can be solved efficiently.

4 Lagrangian duality
Proposition 9.4 (Expression of the dual): The dual of the Linear Program in standard form (LP) is:

max
𝑦∈ℝ𝑚

𝑏⊤𝑦 s.t. 𝐴⊤𝑦 ≤ 𝑐 (LPD)

Exercise: Prove proposition 9.4

Proof : The Lagrangian for (LP) writes:

ℒ(𝑥, 𝜆, 𝜇) = 𝑐⊤𝑥 + 𝜆⊤(𝑏 − 𝐴𝑥) + 𝜇⊤(−𝑥)

where 𝜆 ∈ ℝ𝑚 and 𝜇 ∈ ℝ𝑛
+ are Lagrange multipliers associated with each constraint. The dual problem is

defined as
max
𝜆,𝜇≥0

min
𝑥∈ℝ𝑛

ℒ(𝑥, 𝜆, 𝜇)⏟⏟⏟⏟⏟⏟⏟
dual function 𝑔(𝜆, 𝜇)

Exercise: Prove proposition 6.12.
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Theorem 8.1 (Weak duality): We always have val(𝐿𝑃𝐷) ≤ val(𝐿𝑃).

Theorem 9.5 (Strong duality in Linear Programming): If either (LP) or (LPD) has a feasible solution, then
the values of both problems are equal.

Proof : Based on the termination of the simplex algorithm and a correspondence between the final reduced
costs & the dual variables.

Proposition 9.6 (Complementary slackness): Let 𝑥 and 𝑦 be feasible solutions of the primal and the dual
respectively. Then 𝑥 and 𝑦 are both optimal solutions iff

(𝑐 − 𝐴⊤𝑦)⊤𝑥 = 0 and 𝑦⊤(𝑏 − 𝐴𝑥) = 0

Proof : Follows directly from weak duality.

Remark: The dual variables have an economic interpretation. In the standard form LP, we replace the
constraint 𝐴𝑥 = 𝑏 by 𝐴𝑥 = 𝑏 + 𝜀, then the value of the problem will change by approximately −(𝑦∗)⊤𝜀, where
𝑦∗ is the optimal dual solution.

5 Advanced modeling examples
Exercise (Meunier - PL6): Computing sums of order statistics

For any vector 𝑥 ∈ ℝ𝑛, we denote by 𝑥[𝑖] the 𝑖-th largest element of the set {𝑥1, ..., 𝑥𝑛}. For
instance, 𝑥[1] is the largest component of 𝑥, and 𝑥[𝑛] is the smallest.

1. Let 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚. We fix an integer 𝑘 ∈ [𝑛]. Show that the problem

min
𝑘

∑
𝑖=1

𝑥[𝑖] s.t. 𝐴𝑥 = 𝑏, 𝑥 ∈ ℝ𝑛
+

can be formulate as a Linear Program. Hint: introduce one constraint per subset 𝑆 ⊂ [𝑛] of
size 𝑘.

2. (Harder) Show that there is a formulation with at most 𝑚 + 𝑛 constraints.

Exercise (Meunier - course notes): Nash equilibria in zero-sum games
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