
Integer Programming

Guillaume Dalle (ENPC, CERMICS)

REOP - Class 6 (10/11/2021)

Contents
1 Homework 1

2 Modeling with linear functions and integrality constraints 2
2.1 Mixed Integer Linear Programs and their relaxations . 2
2.2 Concrete examples . 2

2.2.1 Dispatching patients during a pandemic . 2
2.2.2 The power of logical variables . 3

3 Integral polyhedra 3
3.1 When MILPs become easy to solve . 3
3.2 Total Unimodularity . 3
3.3 Examples . 3

4 Solution algorithms 3
4.1 Branch & Bound . 4
4.2 Cutting planes . 4

1 Homework
Exercise: Dynamic programming for the knapsack problem

The knapsack problem consists in filling a bag by choosing from a set of items 𝑖 ∈ {1, ..., 𝑛} with
weights 𝑤𝑖 and prices 𝑝𝑖. Its decision version asks whether there is a subset with total weight
≤ 𝑊max but total price ≥ 𝑃min. Propose a dynamic programming algorithm to compute the value
function

𝑃(𝑛, 𝑊) = maximum price for a bag of weight ≤ 𝑊 with the 𝑛 first items

Is it enough to prove that the knapsack problem is in P?

Exercise (Meunier - PL6): Computing sums of order statistics

For any vector 𝑥 ∈ ℝ𝑛, we denote by 𝑥[𝑖] the 𝑖-th largest element of the set {𝑥1, ..., 𝑥𝑛}. For
instance, 𝑥[1] is the largest component of 𝑥, and 𝑥[𝑛] is the smallest.

1. Let 𝐴 ∈ ℝ𝑚×𝑛 and 𝑏 ∈ ℝ𝑚. We fix an integer 𝑘 ∈ [𝑛]. Show that the problem

min
𝑘

∑
𝑖=1

𝑥[𝑖] s.t. 𝐴𝑥 = 𝑏, 𝑥 ∈ ℝ𝑛
+

can be formulated as a Linear Program. Hint: introduce one constraint per subset 𝑆 ⊂ [𝑛]
of size 𝑘.

2. (Harder) Show that there is a formulation with at most 𝑚 + 𝑛 constraints.

1

2 Modeling with linear functions and integrality constraints
2.1 Mixed Integer Linear Programs and their relaxations
A MILP is an LP where some variables are forced to take integer values:

min
𝑥∈ℤ𝑝×ℝ𝑛−𝑝

𝑐⊤𝑥 s.t. 𝐴𝑥 ≤ 𝑏 (P)

The continuous relaxation of a MILP is the LP obtained by removing integrality constraints:

min
𝑥∈ℝ𝑛

𝑐⊤𝑥 s.t. 𝐴𝑥 ≤ 𝑏 (R)

Examples:

• 𝑥 ∈ ℕ becomes 𝑥 ≥ 0
• 𝑥 ∈ {0, 1} becomes 0 ≤ 𝑥 ≤ 1

If 𝑥 is a solution of (P), then it is a solution of (R). As a consequence, sol(𝑃) ⊂ sol(𝑅) and val(𝑃) ≥ val(𝑅)
(because taking the infimum over a smaller set leads to a larger value).

Complexity:

• LPs are easy to solve, even in very high dimension
• MILPs are hard to solve, they require solving a large number of associated LPs

Exercise (Meunier - PL11): Basic principle of column generation

Let (𝑃) be the linear program

min 𝑐⊤𝑥 s.t. 𝐴𝑥 = 𝑏, 𝑥 ∈ ℝ𝑛
+

We suppose that 𝑛 is very large. Let 𝐼 ⊂ [𝑛], we consider the program (𝑃 𝐼):

min 𝑐⊤
𝐼 𝑥′ s.t. 𝐴𝑥′ = 𝑏, 𝑥′ ∈ ℝ𝐼

+

We denote by (𝐷) and (𝐷𝐼) the respective dual problems of (𝑃) and (𝑃𝐼). Let ̃𝑦 be an optimal
solution of (𝐷𝐼). Show that if ̃𝑦 is also a feasible solution to (𝐷), then the optimal value of (𝑃 𝐼)
is the same as the optimal value of (𝑃).

Why can’t we just solve the relaxation and round the solution to the nearest integer?

• Rounding is hard in high dimension: 2𝑑 possibilities
• Sometimes none of the closest integer solutions are feasible
• There can be an arbitrary gap between the value of (R) and the value of (P)

Exercise (Meunier, PL12): 2-approximation of VERTEX COVER with an LP

1. Find a MILP formulation for the minimum vertex cover problem
2. Propose a way to build a vertex cover from a solution to the linear relaxation of the previous

MILP.
3. Prove that the solution you obtain at at most twice as large as the minimum vertex cover.

2.2 Concrete examples
See (Williams 2013) for very useful tricks in model building.

2.2.1 Dispatching patients during a pandemic

Consider a set of 𝐻 hospitals with reanimation capacity 𝑟ℎ and initial patient load 𝑝ℎ. An excess patient in ℎ
costs 𝑒ℎ, and a patient transfer from ℎ1 to ℎ2 costs 𝑡ℎ1ℎ2

. Formulate a MILP to optimize patient dispatch.

2

2.2.2 The power of logical variables

Exercise 10.4

Exercise 10.5

3 Integral polyhedra
3.1 When MILPs become easy to solve
A polyhedron 𝑃 is integral if 𝑃 = conv(𝑃 ∩ ℤ𝑛). In particular, all its vertices have integer coordinates, which
means that

• any LP with 𝑃 as feasible set has one integral optimal solution
• the simplex algorithm finds such a solution

This implies that solving a MILP is just as easy as solving its continuous relaxation.

3.2 Total Unimodularity
A matrix 𝐴 is Totally Unimodular (TU) if the determinant of all its square submatrices (obtained by removing
rows and/or columns) is in {−1, 0, 1}. In particular, all of its coefficients must be in {−1, 0, 1} too.

Theorem 9.8 - variant (Importance of TU matrices): If 𝐴 is TU and 𝑏 ∈ ℤ𝑚, then 𝑃 = {𝐴𝑥 = 𝑏, 𝑥 ≥ 0} is
integral.

Proof : For any vertex 𝑥 of 𝑃, there is a basis 𝐵 such that 𝑥 is the basic feasible solution associated with 𝐵.
This implies that 𝑥𝑁 = 0 and 𝑥𝐵 = 𝐴−1

𝐵 𝑏 ≥ 0. Since 𝐴 is TU and 𝐴𝐵 is invertible, the determinant of 𝐴𝐵 is
in {−1, 1}. By the comatrix formula, 𝐴−1

𝐵 = 1
det 𝐴𝐵

com(𝐴)⊤, which means 𝐴−1
𝐵 has integer coefficients. Since

𝑏 does too, we conclude that 𝑥 ∈ ℤ𝑛.

Proposition 9.10 (Poincaré criterion for TU): Let 𝐴 ∈ {−1, 0, 1}𝑚×𝑛. If 𝐴 contains at most one 1 and one
−1 per column, then 𝐴 is TU.

Proof : By recursion.

Corollary 9.11 (Integrality of the flow polyhedron): The incidence matrix of a direted graph is TU.

How to build new TU matrices? If 𝐴 is TU, then the following matrices are too: 𝐴⊤, −𝐴, (𝐴, ±𝐴), (𝐴, 𝑒𝑗),
any matrix obtained multiplying a row or column of 𝐴 by −1.

3.3 Examples
Exercise (Meunier, PLNE1)

Exercise (Meunier, PLNE6)

4 Solution algorithms
Naive approach:

1. Enumerate all possible assignments of integer variables
2. For each of them, solve the resulting LP
3. Pick the best solution

Unfortunately, this is very inefficient.

3

4.1 Branch & Bound
Branch & Bound speeds up enumeration by discarding useless cases. It is still exponentially slow in the worst
case, but it works very well in practice.

B&B starts by solving the relaxation (R). If the solution 𝑥∗ has only integer coordinates, bingo, we stop there.
Otherwise, we select a fractional coordinate 𝑥∗

𝑗 and divide the search space by adding one of two constraints:
𝑥𝑗 ≤ ⌊𝑥∗

𝑗⌋ or 𝑥𝑗 ≥ ⌈𝑥∗
𝑗⌉. Then we iteratively apply the same procedure to these two smaller MILPs, thus

building a binary tree where each node corresponds to a subregion of the search space.

To avoid enumerating all possible assignments, we have pruning techniques:

• Prune by infeasibility: If the relaxation at a node has no continuous solution, then we don’t need to
keep looking, because there will be no integer solution either in this region of the space.

• Prune by optimality: If the relaxation at a node returns an integer solution, then we don’t need to keep
looking because we already know the best candidate in this region of the space.

• Prune by bound (the most important): If the relaxation at a node has a value higher than the best
solution found sofar (in the whole tree), then we don’t need to keep looking because no matter what we
find in this region of the space, it will be worse than the best candidate we already have.

Exercise 10.3 (approximate B&B)

Tuning Branch & Bound is often necessary, and commercial solvers include many complicated heuristics
meant to speed up the search. Among the most important design choices, we can list:

• Choice of the variable to branch on
• Choice of the next node to explore

Practical illustration in Julia

Open this webpage and complete the code cells to manually apply B&B.

Note that Branch & Bound is a general principle which applies beyond Integer Programming (see course
notes for a more abstract formulation of the algorithm).

4.2 Cutting planes
TBC

References

Williams, H. Paul. 2013. Model Building in Mathematical Programming. John Wiley & Sons. http:
//books.google.com?id=YJRh0tOes7UC.

4

https://gdalle.github.io/IntroJulia/notebooks/branch_bound.jl.html
http://books.google.com?id=YJRh0tOes7UC
http://books.google.com?id=YJRh0tOes7UC

	Homework
	Modeling with linear functions and integrality constraints
	Mixed Integer Linear Programs and their relaxations
	Concrete examples
	Dispatching patients during a pandemic
	The power of logical variables

	Integral polyhedra
	When MILPs become easy to solve
	Total Unimodularity
	Examples

	Solution algorithms
	Branch & Bound
	Cutting planes

