
Integer Programming – revenge of the MILPs

Guillaume Dalle (ENPC, CERMICS)

REOP - Class 7 (24/11/2021)

Contents
1 Homework 1

2 Solving Integer Linear Programs 1
2.1 Integral polyhedra . 1

2.1.1 Total Unimodularity . 2
2.1.2 Examples . 2

2.2 Branch & Bound . 3
2.2.1 Principle of the algorithm . 3
2.2.2 Improving efficiency . 3

3 Preparing for the KIRO 3

1 Homework
Exercise: Dynamic programming for the knapsack problem

The knapsack problem consists in filling a bag by choosing from a set of items 𝑖 ∈ {1, ..., 𝑛} with
weights 𝑤𝑖 and prices 𝑝𝑖. Its decision version asks whether there is a subset with total weight
≤ 𝑊max but total price ≥ 𝑃min. Propose a dynamic programming algorithm to compute the value
function

𝑃(𝑛, 𝑊) = maximum price for a bag of weight ≤ 𝑊 with the 𝑛 first items

Is it enough to prove that the knapsack problem is in P?

Exercise (Meunier, PL12): 2-approximation of VERTEX COVER with an LP

1. Find a MILP formulation for the minimum vertex cover problem
2. Propose a way to build a vertex cover from a solution to the linear relaxation of the previous

MILP.
3. Prove that the solution you obtain at at most twice as large as the minimum vertex cover.

Exercise 10.4

Exercise 10.5

2 Solving Integer Linear Programs
2.1 Integral polyhedra
A polyhedron 𝑃 is integral if 𝑃 = conv(𝑃 ∩ ℤ𝑛). In particular, all its vertices have integer coordinates, which
means that

1

• any LP with 𝑃 as feasible set has one integral optimal solution
• the simplex algorithm finds such a solution

In these cases, solving a MILP is just as easy as solving its continuous relaxation.

2.1.1 Total Unimodularity

A matrix 𝐴 is Totally Unimodular (TU) if the determinant of all its square submatrices (obtained by removing
rows and/or columns) is in {−1, 0, 1}. In particular, all of its coefficients must be in {−1, 0, 1} too.

Theorem 9.8 - variant (Importance of TU matrices): If 𝐴 is TU and 𝑏 ∈ ℤ𝑚, then 𝑃 = {𝐴𝑥 = 𝑏, 𝑥 ≥ 0} is
integral.

Proof : For any vertex 𝑥 of 𝑃, there is a basis 𝐵 such that 𝑥 is the basic feasible solution associated with 𝐵.
This implies that 𝑥𝑁 = 0 and 𝑥𝐵 = 𝐴−1

𝐵 𝑏 ≥ 0. Since 𝐴 is TU and 𝐴𝐵 is invertible, the determinant of 𝐴𝐵 is
in {−1, 1}. By the comatrix formula, 𝐴−1

𝐵 = 1
det 𝐴𝐵

com(𝐴)⊤, which means 𝐴−1
𝐵 has integer coefficients. Since

𝑏 does too, we conclude that 𝑥 ∈ ℤ𝑛.

Proposition 9.10 (Poincaré criterion for TU): Let 𝐴 ∈ {−1, 0, 1}𝑚×𝑛. If 𝐴 contains at most one 1 and one
−1 per column, then 𝐴 is TU.

Proof : By recursion.

Corollary 9.11 (Integrality of the flow polyhedron): The incidence matrix of a direted graph is TU.

How to build new TU matrices? If 𝐴 is TU, then the following matrices are too: 𝐴⊤, −𝐴, (𝐴, ±𝐴), (𝐴, 𝑒𝑗),
any matrix obtained multiplying a row or column of 𝐴 by −1.

2.1.2 Examples

Reminder: a matching 𝑀 in a graph 𝐺 is a subset of pairwise disjoint edges.

Exercise (Maximum weight matching)

We consider a bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) and a weight function 𝑤 ∶ 𝐸 → ℝ. The maximum
weight matching problem (or assignment problem) looks for a matching 𝑀 that maximizes
∑𝑒∈𝑀 𝑤𝑒.

1. Show that it can be modeled as a flow problem.
2. Propose two polynomial algorithms to solve it.

Remarks:

• There are other algorithms to find maximum matchings in bipartite graphs, such as the Hungarian
(Kuhn-Munkres) algorithm. For non-bipartite graphs, this is necessary since the flow reformulation
does not apply.

• There are other matching problems with very different solution methods: the stable matching problem
and stable roommates problem are two examples.

Exercise (Meunier, PLNE6)

A company has a set 𝐽 of possible jobs to do. Each job 𝑗 ∈ 𝐽 is characterized by a start date 𝑠𝑗,
an end date 𝑒𝑗 and a benefit 𝑏𝑗. At every time, the number of active jobs cannot exceed 𝑐. The
company must choose the subset 𝑋 ⊂ 𝐽 of jobs that bring maximum benefit while remaining
feasible.

1. Formulate this problem as an Integer Linear Program.
2. An interval matrix is a matrix (𝑎𝑖𝑗) with coefficients in {0, 1} such that if 𝑎𝑘𝑗 = 𝑎𝑙𝑗 = 1 for

some couple 𝑘 ≤ 𝑙, then 𝑎𝑖𝑗 = 1 for all 𝑖 ∈ [𝑘, 𝑙]. Using the fact that interval matrices are
TU, prove that the simplex algorithm can be used to solve this problem.

2

2.2 Branch & Bound
Branch & Bound speeds up naive enumeration by discarding useless cases. It is still exponentially slow in the
worst case, but it works very well in practice.

Remark: B&B is a general principle which applies beyond Integer Programming (see course notes for a more
abstract formulation of the algorithm).

2.2.1 Principle of the algorithm

B&B builds a binary search tree where each node corresponds to a region of the solution space. The root
node contains the initial problem, say (𝑃), and its children are obtained by splitting the domain of an integer
variable 𝑥𝑗 in two. The left child contains the problem (𝑃)∩ [𝑥𝑗 ≤ 𝑘], and the right child contains the problem
(𝑃) ∩ [𝑥𝑗 ≥ 𝑘 + 1] Then, we keep going like this, splitting nodes and diving further into the tree.

Luckily, we usually don’t have to enumerate all the nodes, because we can prune some of them:

• Prune by infeasibility: If the continuous relaxation at a node has no solution, then we don’t need to
keep looking, because there will be no integer solution either in this region of the space.

• Prune by optimality: If the relaxation at a node returns an integer solution, then we don’t need to keep
looking because we already know the best candidate in this region of the space.

• Prune by bound (the most important): If the relaxation at a node has a value higher than the best
solution found sofar (in the whole tree), then we don’t need to keep looking because no matter what we
find in this region of the space, it will be worse than the best candidate we already have.

If neither of these three bounding techniques applies, then we must split the current node. To do that,
we usually choose 𝑥𝑗 and 𝑘 based on a fractional component of the optimal solution 𝑥∗ to the continuous
relaxation: the additional constraints are 𝑥𝑗 ≤ ⌊𝑥∗

𝑗⌋ and 𝑥𝑗 ≥ ⌈𝑥∗
𝑗⌉.

Practical illustration in Julia

Open this url https://gdalle.github.io/IntroJulia/notebooks/branch_bound.jl.html and complete
the code cells to manually apply B&B on a very simple example.

2.2.2 Improving efficiency

Tuning Branch & Bound is often necessary, and commercial solvers include many complicated heuristics
meant to speed up the search. Among the most important design choices, we can list:

• Choice of the variable to branch on
• Choice of the next node to explore

In addition, several methods can be used to obtain tighter relaxations, which lead to better lower bounds and
more efficient pruning:

• Reformulations
• Decomposition techniques
• Valid inequalities ⟹ branch and cut

Even though B&B is guaranteed to return an optimal solution with enough time, we often decide to stop
once a desired accuracy is reached.

Exercise 10.3 (approximate B&B)

3 Preparing for the KIRO

3

https://gdalle.github.io/IntroJulia/notebooks/branch_bound.jl.html

	Homework
	Solving Integer Linear Programs
	Integral polyhedra
	Total Unimodularity
	Examples

	Branch & Bound
	Principle of the algorithm
	Improving efficiency

	Preparing for the KIRO

