publications
a list of my academic contributions
2022
- TalkLarge Neighborhood Search and Structured Prediction for the Inventory Routing ProblemLouis Bouvier, Guillaume Dalle, and Axel Parmentier
We consider a large-scale multi-depot multi-commodity Inventory Routing Problem (IRP) to model the packaging return logistics of a major European car manufacturer. No algorithm is known to properly scale to our context. We propose a Large Neighborhood Search (LNS) based on common routing neighborhoods and two new ones: the reinsertion of a customer and a commodity in the IRP solution. We also try to bypass the heavy computations of the LNS leveraging recent ideas in Machine Learning for Operations Research in structured prediction.
@unpublished{bouvierLargeNeighborhoodSearch2022, title = {Large {{Neighborhood Search}} and {{Structured Prediction}} for the {{Inventory Routing Problem}}}, author = {Bouvier, Louis and Dalle, Guillaume and Parmentier, Axel}, date = {2022-02}, eventtitle = {23ème {{Congrès Annuel}} de {{La Société Française}} de {{Recherche Opérationnelle}} et d’{{Aide}} à {{La Décision}}}, venue = {{Villeurbanne - Lyon, France}} }
- PreprintSolving a Continent-Scale Inventory Routing Problem at Renault
This paper is the fruit of a partnership with Renault. Their backward logistic requires to solve a continent-scale multi-attribute inventory routing problem (IRP). With an average of 30 commodities, 16 depots, and 600 customers spread across a continent, our instances are orders of magnitude larger than those in the literature. Existing algorithms do not scale. We propose a large neighborhood search (LNS). To make it work, (1) we generalize existing split delivery vehicle routing problem and IRP neighborhoods to this context, (2) we turn a state-of-the art matheuristic for medium-scale IRP into a large neighborhood, and (3) we introduce two novel perturbations: the reinsertion of a customer and that of a commodity into the IRP solution. We also derive a new lower bound based on a flow relaxation. In order to stimulate the research on large-scale IRP, we introduce a library of industrial instances. We benchmark our algorithms on these instances and make our code open-source. Extensive numerical experiments highlight the relevance of each component of our LNS.
@misc{bouvierSolvingContinentScaleInventory2022, title = {Solving a {{Continent-Scale Inventory Routing Problem}} at {{Renault}}}, author = {Bouvier, Louis and Dalle, Guillaume and Parmentier, Axel and Vidal, Thibaut}, date = {2022-09-01}, number = {arXiv:2209.00412}, publisher = {{arXiv}}, doi = {10.48550/arXiv.2209.00412}, url = {http://arxiv.org/abs/2209.00412}, }
- TalkImplicitDifferentiation.Jl: Differentiating Implicit FunctionsGuillaume Dalle, and Mohamed Tarek
We present a Julia package for differentiating through functions that are defined implicitly. It can be used to compute derivatives for a wide array of "black box" procedures, from optimization algorithms to fixed point iterations or systems of nonlinear equations. Since it mostly relies on defining custom chain rules, our code is lightweight and integrates nicely with Julia’s automatic differentiation and machine learning ecosystem.
@unpublished{dalleImplicitDifferentiationJlDifferentiating2022, type = {Conference talk}, title = {{{ImplicitDifferentiation}}.Jl: Differentiating Implicit Functions}, author = {Dalle, Guillaume and Tarek, Mohamed}, date = {2022-07-29}, url = {https://pretalx.com/juliacon-2022/talk/DTHTBC/}, eventtitle = {{{JuliaCon}} 2022}, }
- TalkInferOpt.Jl: Combinatorial Optimization in ML PipelinesGuillaume Dalle, Louis Bouvier, and Léo Baty
We present InferOpt.jl, a generic package for combining combinatorial optimization algorithms with machine learning models. It has two purposes: 1) Increasing the expressivity of learning models thanks to new types of structured layers. 2) Increasing the efficiency of optimization algorithms thanks to an additional inference step. Our library provides wrappers for several state-of-the-art methods in order to make them compatible with Julia’s automatic differentiation ecosystem.
@unpublished{dalleInferOptJlCombinatorial2022, type = {Conference talk}, title = {{{InferOpt}}.Jl: Combinatorial Optimization in {{ML}} Pipelines}, author = {Dalle, Guillaume and Bouvier, Louis and Baty, Léo}, date = {2022-07-29}, url = {https://pretalx.com/juliacon-2022/talk/P7XJCV/}, eventtitle = {{{JuliaCon}} 2022}, }
- PreprintLearning with Combinatorial Optimization Layers: A Probabilistic Approach
Combinatorial optimization (CO) layers in machine learning (ML) pipelines are a powerful tool to tackle data-driven decision tasks, but they come with two main challenges. First, the solution of a CO problem often behaves as a piecewise constant function of its objective parameters. Given that ML pipelines are typically trained using stochastic gradient descent, the absence of slope information is very detrimental. Second, standard ML losses do not work well in combinatorial settings. A growing body of research addresses these challenges through diverse methods. Unfortunately, the lack of well-maintained implementations slows down the adoption of CO layers. In this paper, building upon previous works, we introduce a probabilistic perspective on CO layers, which lends itself naturally to approximate differentiation and the construction of structured losses. We recover many approaches from the literature as special cases, and we also derive new ones. Based on this unifying perspective, we present InferOpt.jl, an open-source Julia package that 1) allows turning any CO oracle with a linear objective into a differentiable layer, and 2) defines adequate losses to train pipelines containing such layers. Our library works with arbitrary optimization algorithms, and it is fully compatible with Julia’s ML ecosystem. We demonstrate its abilities using a pathfinding problem on video game maps.
@misc{dalleLearningCombinatorialOptimization2022, title = {Learning with {{Combinatorial Optimization Layers}}: A {{Probabilistic Approach}}}, author = {Dalle, Guillaume and Baty, Léo and Bouvier, Louis and Parmentier, Axel}, date = {2022-07-27}, number = {arXiv:2207.13513}, publisher = {{arXiv}}, doi = {10.48550/arXiv.2207.13513}, url = {https://arxiv.org/abs/2207.13513}, }
- TalkLearning to Solve Stochastic Multi-Agent Path FindingGuillaume Dalle, and Axel Parmentier
In large railway networks, real-time traffic management is essential to minimize disruptions and maximize punctuality. We propose a novel approach to tackle the Multi-Agent Path Finding problem, using the AIcrowd Flatland challenge as a testing ground. By leveraging machine learning inside simple combinatorial procedures such as prioritized planning, we provide a principled way to make better heuristic decisions and anticipate delay propagation.
@unpublished{dalleLearningSolveStochastic2022, title = {Learning to {{Solve Stochastic Multi-Agent Path Finding}}}, author = {Dalle, Guillaume and Parmentier, Axel}, date = {2022-02}, eventtitle = {23ème {{Congrès Annuel}} de {{La Société Française}} de {{Recherche Opérationnelle}} et d’{{Aide}} à {{La Décision}}}, venue = {{Villeurbanne - Lyon, France}} }
- PreprintMinimax Estimation of Partially-Observed Vector AutoRegressionsGuillaume Dalle, and Yohann De Castro
High-dimensional time series are a core ingredient of the statistical modeling toolkit, for which numerous estimation methods are known.But when observations are scarce or corrupted, the learning task becomes much harder.The question is: how much harder? In this paper, we study the properties of a partially-observed Vector AutoRegressive process, which is a state-space model endowed with a stochastic observation mechanism.Our goal is to estimate its sparse transition matrix, but we only have access to a small and noisy subsample of the state components.Interestingly, the sampling process itself is random and can exhibit temporal correlations, a feature shared by many realistic data acquisition scenarios.We start by describing an estimator based on the Yule-Walker equation and the Dantzig selector, and we give an upper bound on its non-asymptotic error.Then, we provide a matching minimax lower bound, thus proving near-optimality of our estimator.The convergence rate we obtain sheds light on the role of several key parameters such as the sampling ratio, the amount of noise and the number of non-zero coefficients in the transition matrix.These theoretical findings are commented and illustrated by numerical experiments on simulated data.
@misc{dalleMinimaxEstimationPartiallyObserved2022, title = {Minimax {{Estimation}} of {{Partially-Observed Vector AutoRegressions}}}, author = {Dalle, Guillaume and De Castro, Yohann}, date = {2022-05-05}, number = {arXiv:2106.09327}, publisher = {{arXiv}}, doi = {10.48550/arXiv.2106.09327}, url = {http://arxiv.org/abs/2106.09327}, }
- TalkRecherche d’itinéraires dans un réseau ferroviaire : apprendre à mieux optimiserGuillaume Dalle
Dans tout réseau ferroviaire de grande taille, une gestion efficace du trafic est essentielle pour maximiser la ponctualité et réagir aux incidents. Le défi principal est de construire puis d’ajuster l’itinéraire de chaque train en évitant les conflits d’infrastructure : sur des rails, difficile de se dépasser ou de se croiser. Ce problème, appelé "Multi-Agent Path Finding", est NP-dur, si bien que pour les instances de grande taille, seules les méthodes heuristiques génèrent des solutions en un temps raisonnable. L’une d’entre elles, appelée "Prioritized Planning", ordonne les trains au préalable, puis calcule leurs trajets de façon séquentielle grâce à un algorithme de plus court chemin (typiquement A*). La performance de cette heuristique dépend grandement de la permutation choisie, c’est pourquoi nous en proposons une version data-driven, inspirée des travaux d’Axel Parmentier. En effet, les grilles horaires varient peu d’un jour à l’autre, et l’on peut donc s’appuyer sur l’historique des instances passées (et de leurs solutions) afin de mieux résoudre celles du futur. La phase d’apprentissage consiste à estimer les paramètres de l’encodeur, qui combine des features d’intérêt pour associer un score d’importance à chaque train. Cependant, ni le tri ni le Prioritized Planning ne sont des opérations différentiables, ce qui exclut l’utilisation de méthodes de gradient lors de l’entraînement. Pour pallier cette difficulté, nous interprétons le tri comme un Programme Linéaire, dont nous perturbons le vecteur de coût avec un bruit aléatoire pour lisser son comportement. Nous modifions également la cible de l’apprentissage, en prédisant non pas l’ensemble des chemins mais simplement la permutation des trains. Cela permet de considérer le Prioritized Planning comme une étape de post-traitement, qu’il n’est plus nécessaire de différencier. En revanche, il faut alors constituer le dataset de façon adaptée, par exemple en résolvant ses instances grâce à une recherche locale sur le permutahedron. Nous implémentons notre algorithme dans le langage Julia, ce qui nous permet de tirer parti de son écosystème de différenciation algorithmique. Les tests sont pratiqués sur le challenge Flatland, un environnement simplifié de simulation ferroviaire issu d’une collaboration entre les chemins de fer suisses, allemands et français. A court terme, nous prévoyons d’étendre notre approche au cas stochastique, afin de faciliter l’adaptation du plan de transport suite à une défaillance matérielle.
@unpublished{dalleRechercheItinerairesDans2022, title = {Recherche d'itinéraires dans un réseau ferroviaire : apprendre à mieux optimiser}, author = {Dalle, Guillaume}, date = {2022-03-06}, url = {https://indico.math.cnrs.fr/event/6564/contributions/6450/}, eventtitle = {Journées SMAI MODE 2022}, venue = {{Limoges}} }
2021
- TalkPourquoi les trains sont-ils toujours en retard?Guillaume Dalle, Yohann De Castro, and Axel Parmentier
Les réseaux ferroviaires sont des systèmes très instables : il suffit parfois d’un petit incident pour paralyser toute une ligne pendant plusieurs heures. Ces phénomènes de propagation sont dus à des conflits de ressources entre trains, c’est pourquoi leur compréhension nécessiterait des données très précises sur le plan de transport. Malheureusement, de telles données sont souvent inaccessibles. Nous proposons donc un nouveau modèle de retards basé sur une variable latente qui représente la congestion des voies. Cette congestion vit sur les arêtes du graphe qui représente le réseau, et elle évolue suivant un processus auto-régressif vectoriel (VAR) en grande dimension. Cependant, pas question de l’observer directement : les seules informations dont on dispose sont les temps de trajet des trains, ce qui correspond à une projection bruitée du signal d’intérêt. Dans ces conditions, apprendre la matrice de transition du processus VAR peut se révéler difficile. Nos analyses statistiques fournissent le taux de convergence optimal de l’erreur d’estimation, qui dépend de plusieurs paramètres facilement interprétables : dimension du réseau, densité du trafic, vitesse de propagation des retards. Nous prouvons d’abord l’existence d’une borne inférieure minimax, qui s’applique à n’importe quel estimateur, puis nous identifions un algorithme parcimonieux capable d’atteindre cette borne inférieure.
@unpublished{dallePourquoiTrainsSontils2021, title = {Pourquoi les trains sont-ils toujours en retard?}, author = {Dalle, Guillaume and De Castro, Yohann and Parmentier, Axel}, date = {2021-11-16}, url = {https://irmar.univ-rennes1.fr/evenements/guillaume-dalle-cermics-httpsgdallegithubio}, eventtitle = {Séminaire Gaussbusters}, venue = {{Université de Rennes}} }
2020
- TalkDelay Propagation on a Suburban Railway NetworkGuillaume Dalle, Yohann De Castro, and Axel Parmentier
Understanding and predicting delays is a central task for any railway system, but it is made much more difficult by interactions between trains. We propose a new model for the delay propagation phenomenon, which takes into account infrastructure constraints without assuming knowledge of the resource conflicts linking trains with one another. Our approach relies on a set of hidden variables called the network jam, structured as a Dynamic Bayesian Network to enable spatial propagation. We also present a statistical analysis of the minimax estimation error, a variational inference method and numerical tests on simulated and real data.
@unpublished{dalleDelayPropagationSuburban2020, title = {Delay Propagation on a Suburban Railway Network}, author = {Dalle, Guillaume and De Castro, Yohann and Parmentier, Axel}, date = {2020-01}, url = {https://easychair.org/publications/preprint/9CGf}, eventtitle = {21ème {{Congrès Annuel}} de {{La Société Française}} de {{Recherche Opérationnelle}} et d’{{Aide}} à {{La Décision}}}, venue = {{Montpellier, France}} }
- PatentMethod for Determining a Soiling Speed of a Photovoltaic Generation UnitPierre Stephan, and Guillaume Dalle
The invention relates to a method for determining a soiling speed of a photovoltaic generation unit, in which, on the basis of values of an electrical variable generated by the photovoltaic generation unit at a plurality of moments in a time series and corresponding values of meteorological parameters, and on the basis of a relationship between an electrical variable generated by said generation unit at one moment, the values taken with the meteorological parameters at the same moment, and the occurrence of cleaning events, wherein said relationship comprises multiple relational parameters including the speed of soiling and the occurrence of a cleaning event is modelled by a probability law involving a relational parameter, the soiling speed is determined in iterations in which vectors that are representative of the occurrence of cleaning events are simulated.
@patent{stephanMethodDeterminingSoiling2020, type = {patent}, title = {Method for Determining a Soiling Speed of a Photovoltaic Generation Unit}, author = {Stephan, Pierre and Dalle, Guillaume}, holder = {{Electricite De France}}, date = {2020-06-11}, number = {WO2020115431A1}, location = {{WO}}, url = {https://patents.google.com/patent/WO2020115431A1/en}, }
2019
- ThesisDelay Propagation on a Suburban Railway NetworkGuillaume Dalle
Train delays are a frequent feature of many large railway networks. Anticipating their consequences requires real-time delay prediction systems, which can be deployed to assist passenger information or traffic regulation. A major challenge for delay prediction is the amount of interactions between trains: since they must share the same resources, one train’s delay can affect many others by blocking the track or monopolizing a driver. Working on a dataset of recorded event times provided by the French railway company SNCF, we construct a delay propagation model that exploits the limited information available. Identifying infrastructure constraints as the main interaction vector leads to the definition of a hidden "network delay", which expresses the amount of congestion on the network’s edges. Its probabilistic evolution is structured as a Dynamic Bayesian Network. To learn parameters and predict future delays, we use Stochastic Variational Inference, as implemented in the Pyro library. We first analyze our model from a theoretical point of view, giving a lower bound on the minimax estimation risk. We then perform numerical tests, both on a simulated dataset and on actual event logs from the Paris suburban network. While these tests do underline the limitations of our approach, they also show that delay propagation deserves to be taken into account when designing a delay prediction system.
@thesis{dalleDelayPropagationSuburban2019, type = {mathesis}, title = {Delay {{Propagation}} on a {{Suburban Railway Network}}}, author = {Dalle, Guillaume}, date = {2019}, institution = {{Université Paris-Saclay}}, }
- TalkDelay Propagation on a Suburban Railway NetworkGuillaume Dalle, Yohann De Castro, and Axel Parmentier
A new method is introduced to predict train delays on a suburban railway network. Delay propagation is accounted for using a Dynamic Bayesian Network related to the underlying infrastructure graph. We analyze a simplified model from a statistical point of view, and obtain a lower bound on the minimax estimation risk. We propose a generic implementation using Stochastic Variational Inference and the Pyro library to separate estimation from modeling. We present numerical tests on both simulated data and real event logs from the Paris RER network.
@unpublished{dalleDelayPropagationSuburban2019a, title = {Delay Propagation on a Suburban Railway Network}, author = {Dalle, Guillaume and De Castro, Yohann and Parmentier, Axel}, date = {2019-12-04}, eventtitle = {{{PGMO Days}}}, venue = {{Saclay, France}} }